Past Seminars

Functional Magnetic Nanomaterials: What does the future hold?

Abstract: Functional magnetic nanomaterials, whose properties are fundamentally different from their bulk counterparts, have attracted a global interest owing to their prospective applications in advanced spintronics and nanomedicine. In this lecture, I will discuss fundamental aspects of nanomagnetism, properties of magnetic materials upon size reduction to the nanoscale, and recent advances in synthesis, characterization and applications of magnetic nanomaterials and their hybrid nanostructures. In particular, I will demonstrate how magnetic (iron oxide) nanoparticles can be effectively exploited for selective drug delivery, magnetic hyperthermia, and biodetection. Finally, I highlight our recent discovery of strong room-temperature ferromagnetism in transition metal dichalcogenide (VSe2) as the material is reduced from bulk (micro-size) to a single layer (less than nm). This is a new type of magnetic nanomaterial which has the potential to transform the field of van der Waals spintronics. 

 

Biographical Sketch: Dr. Phan is an Associate Professor of Physics at the University of South Florida, USA. He received B.S., M.S., and Ph.D. degrees in Physics from Vietnam National University (2000), Chungbuk National University – South Korea (2003), and Bristol University – United Kingdom (2006), respectively. His research interests lie in the physics and applications of magnetic materials, with an expertise on the development of novel materials exhibiting magnetocaloric and magnetoimpedance effects for energy-efficient magnetic refrigeration and smart sensor technologies. He has published more than 240 peer-reviewed journal papers (h-index: 40 from Google Scholar), 4 review papers, 4 book chapters, and 1 text book. Presently, he serves as Editor for Journal of Electronic Materials, Editor for Applied Sciences, and Managing Editor for Journal of Science: Advanced Materials and Devices. He is a regular reviewer for more than 100 major journals, with 10 “Outstanding Referee” awards from various ISI journals. He is the winner of the 2017 Outstanding Research Achievement Award of the University of South Florida. He has delivered keynote, plenary and invited talks at professional meetings on Magnetism and Magnetic Materials (MMM, ICM, APS, MRS, ISAMMA) and organized international conferences on Nanomaterials, Energy, and Nanotechnology.

Multiscale Atomistics for Defects in Electronic Materials

Abstract: Ionic solids are important for electronic and energy storage/conversion devices. Examples include ferroelectrics and solid oxides. Defects in these materials play a central role in enabling their properties: for example, the electromechanics of ferroelectrics occurs by the nucleation and growth of domain wall defects, and solid oxide ionic conduction is through the motion of point defects. I will talk about our efforts to develop multiscale atomistic methods to understand the structure of defects in these materials. The central challenge is the long-range nature of the electrostatic interactions coupled with the nonlinearity of the short-range interactions.

 

Biographical Sketch: Kaushik Dayal is Professor of Engineering at Carnegie Mellon University. He received his B.Tech. at the Indian Institute of Technology Madras and his M.S. and Ph.D. in Mechanical Engineering at Caltech. His research interests are in the area of theoretical and computational multiscale methods applied to functional materials and electromagnetic effects. His research has been recognized by young investigator awards from ARO, AFOSR and NSF, the Eshelby and Leonardo da Vinci medals, and the Carnegie Institute Early Career Fellowship. He has held visiting appointments at the University of Bath, University of Bonn, National Energy Technology Laboratory and Air Force Research Laboratory.

 

Microstructure-induced Capillary Forces and their Role in Bone Regeneration

Abstract: More than 1.5 million people undergo bone graft procedures annually in the US to repair bone defects that will not heal spontaneously. These defects severely decrease the quality of life and are an economic burden to those affected and to the health care system. The already considerable demand for treatment is growing rapidly as the population ages and life expectancy increases. Allograft and autograft simply cannot adequately address the growing demand. The biggest technical and scientific challenge in treating these defects is in achieving complete osteointegration. There are promising approaches that combine scaffolds with exogenous cells and growth factors; however, these approaches are complex, expensive, and are still often considered to be too risky to the patient. New approaches that are safe, can be implemented in the near-term, and that could be applied to a range of scaffolds, and potentially even allografts, are needed.  My research group focuses on manufacture, design, characterization, and application of CaP scaffolds with multiscale porosity.  Our approach is to use capillary action to self-seed, or impregnate, CaP scaffolds that have multiscale porosity. We hypothesized that capillary force driven self-seeding would enhance bone regeneration. In vitro studies and a mathematical model showed that the micropore-generated capillarity generated was sufficient to draw in cells.  Further, the penetration depth was dependent on cell size and stiffness, with some cell types penetrating further than others.  In the subsequent in vivo study, samples that used capillarity, i.e. dry samples, were implanted and compared to two groups:  wet and non-microporous (NMP).  Wet samples were infiltrated with PBS prior to implantation such that they could not make use of capillarity.  NMP samples did not contain microporosity and therefore had reduced capillarity. After three weeks, the average volume fraction of bone for all groups was the same across groups. However, the distribution of bone and the depth of bone growth were significantly better for dry samples compared to wet and NMP.  The results have important implications in scaffold design, and use of this mechanism will help to address the challenge of repair of critical size bone defects in scaffold-based bone repair. Further, it will do so without the use of growth factors or exogenous cells.

Biographical Sketch: Professor Amy Wagoner Johnson is an Associate Professor in the Department of Mechanical Science and Engineering (MechSE) at the University of Illinois at Urbana-Champaign, an inaugural faculty member of the new Carle Illinois College of Medicine, and a Chair of Excellence with the NanoSciences Foundation (Grenoble, France). Her research focuses on biomaterials and biomechanics, including soft tissue related mechanics to preterm birth and microstructural cues in CaP-based materials for bone regeneration. She received her BS in Materials Science and Engineering from The Ohio State University, and PhD in Engineering from Brown University in 2002 with major in materials science and minor in solid mechanics.  She joined University of Illinois in 2001 as research faculty, became an Assistant Professor in 2005, and Associate Professor in 2012.  She is currently a part-time faculty member of the Beckman Institute for Advanced Science and Technology, and has affiliations with the Department of Bioengineering, and Institute for Genomic Biology, where she is a Core Member of the Regenerative Biology and Tissue Engineering Theme.

Design and Scalable Synthesis of Nanoscale Materials for Solar Energy Conversion

Abstract: My research is aimed at creating materials that will be the building blocks of economical, large-scale, clean energy technologies of the future. The key to creating effective energy conversion materials is controlling the flow of energy, matter and electricity at the nanoscale by careful design of the shape, size and composition of materials at the same scale. I am primarily interested in developing materials for cheap yet efficient solar cells that either generate electricity or directly generate chemical fuels. As an example, I will present semiconductor/liquid junction solar cells constructed on metal oxide nanowire scaffolds that achieved record photocurrents, and also new results on metal sulfide materials. Equally important is the development of methods for the rapid, economical synthesis of highly structured nanomaterials in quantities that match the scale of our energy problem. As an example, I will describe novel flame-synthesis methods for the bottom-up growth of arrays of single-crystal metal oxide nanowires and composites over large areas on electrically conductive substrates. Technologies like this may someday remove barriers to the practical implementation of nanotechnology in solar energy conversion devices.

Biographical Sketch: Pratap Rao is an Assistant Professor in the Mechanical Engineering Department at the Worcester Polytechnic Institute (WPI). He received his BS in 2007 from WPI and his PhD in 2013 from Stanford University. He has co-authored 27 peer-reviewed papers that have collectively been cited over 1,700 times. His work on materials for solar energy conversion and electrocatalysis is currently funded by the National Science Foundation and the Massachusetts Clean Energy Center. At WPI, he is the recipient of the Mechanical Engineering Excellence in Research Award and the James Nichols Heald Research Award.

 

Mechanics at the Mesoscale: Testing, Modeling, and Re-Engineering Living Soft Matter

Abstract: Research in the Simmons Lab works to understand the feedback loop between cell-level processes and tissue-level mechanics. We have developed our own characterization equipment to effectively compare excised tissues, synthetic hydrogels, and engineered constructs. With our custom tools and models, we are studying a novel animal, the African Spiny Mouse, that is capable of regenerating skin, cardiac muscle, and skeletal muscle without fibrosis, and we are attempting to recreate these regenerative processes in vitro. To study pancreatic cancer, we are using cells from patients to engineer tumors-in-a-dish that have the same mechanical properties of the original tumors for translational and clinical applications.

Biographical Sketch: Chelsey S. Simmons, Ph.D., joined the Department of Mechanical and Aerospace Engineering at the University of Florida in Fall 2013, following a visiting research position at the Swiss Federal Institute of Technology (ETH) Zurich. Her research lab investigates the relationship among cell biology and tissue mechanics, and their projects are funded by the National Science Foundation, National Institutes of Health, and American Heart Association. She has received numerous fellowships and awards, including BMES-CMBE’s Rising Star Award (2017) and ASME’s New Faces Award (2015). In addition to her engineering research and coursework, Simmons received a Ph.D. Minor in Education and is the PI of a $600k Research Experiences for Teachers Site. She teaches undergraduate Mechanics of Materials and graduate BioMEMS courses and received Teacher of the Year in 2017. Simmons received her B.S. cum laude from Harvard University and her M.S. and Ph.D. from Stanford University.

Power-to-Gas and Hydrogen Energy Storage for a 100% Renewable Future

Abstract: Renewable, ultra-low emissions and high efficiency energy conversion systems will be required to introduce energy resource and environmental sustainability. In particular the dynamic dispatch, massive energy storage capacity, and ubiquitous transmission and distribution of energy that the power-to-gas and hydrogen energy storage concepts provide will become essential to enable a 100% renewable economy.  In addition, these concepts enable zero greenhouse gas and zero criteria pollutant emissions energy conversion that spans across applications in the built environment, to transportation, to utility grid network support and sustainability.  Recent research on the dynamics and control of electrochemical energy conversion systems to enable this future will be discussed.

 

Biographical Sketch: Prof. Brouwer is an energy system dynamics expert with research interests in advanced and alternative energy systems development; electrochemical conversion devices and systems such as fuel cells, electrolyzers and batteries; dynamic simulation and control systems development; energy system thermodynamics, design, and integration; turbulent reacting flows; chemical kinetics; and electrochemical reactions with concurrent heat, mass and momentum transfer.

 

Mechanical Engineering Lightning Talks

Join us to learn about the exciting research that some of our Faculty and their groups are doing at our Department at our ME Lightning Talks!  Pizza will be provided.  Since space is limited, this event is limited to ME graduate students and faculty, and a limited number of ME undergraduate seniors. If you are an undergraduate senior and would like to attend, please RSVP at https://goo.gl/forms/HypP70ShGSqKTNay2  (spots will be granted in the order that confirmations are received until capacity is filled). You will receive later in the week an email confirming your attendance.

 

Prof. Thanh Nguyen – Novel processing of biodegradable and biocompatible polymers at small scales for medical applications. Biodegradable polymers have a significant impact to medical field. In my talk, I will present researches which aim to further fabricate and process the polymers at small scales, enabling their special functions for use in important medical implant devices. The first part of this talk will be focused on a novel manufacturing technology, which allows to create versatile 3D microstructures of biodegradable polymers for vaccine/drug delivery. The second part of this talk will be emphasized on a new approach, which enables the polymers to be electromechanically-active for use in an implanted biodegradable force-sensor. The presented works, while significantly enhancing functionality and usefulness of the polymers, do not compromise their excellent biodegradability and biocompatibility for medical use.

 

Prof. Georgios Matheou – Numerical model error in simulations of turbulence. Although turbulent flows are prominent and ubiquitous in many applications, their prediction remains challenging. Simulation has the potential to become the primary tool for discovery by utilizing recent advances in computing power. Thus, high fidelity simulations with good characterization of model errors are required. A study of numerical model error in passive scalar mixing is discussed. The range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. In practice, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. Analysis of scalar-excursion statistics shows that unphysical scalar excursions in large-eddy simulations result from dispersive errors of the convection-term discretization where the subgrid-scale model provides insufficient dissipation to produce a sufficiently smooth scalar field.

 

Prof. Dianyun Zhang – An Integrated Multi-Scale and Multi-Physics Modeling Tool for Advanced Composite Structures. Fiber-reinforced polymer matrix composites have been increasingly used in aerospace structures owing to the weight and life-cycle cost savings they provide. However, manufacturing these lightweight materials involves curing an epoxy resin under elevated temperatures, which inevitably results in dimensional change and residual stress build-up. To minimize these manufacturing-induced imperfections through an optimal cure cycle, it is critical to develop a physics-based process model underlying the fundamentals of resin curing kinetics and the correlation between the process parameters and the final structural performance. In this talk, an integrated multi-physics and multiscale model will be used to predict the residual stress generation and dimensional change of a composite laminate. Predictions of the warpage of an unsymmetrical panel and the spring-in angle of an L-shaped composite flange will be used to illustrate the advantages of the proposed modeling tool.

Structure Genome: A Revolutionary Multiscale Approach to Bridging Materials Genome and Structural Analysis

Abstract: Materials Genome Initiative (MGI) and Integrated Computational Materials Engineering (ICME) have the potential to accelerate discovery, developing, manufacturing, and deploying of advanced materials. However, it is usually not the material performance, but the structural performance or system performance we are pursuing. To fill the gap between materials genome and structural analysis, the concept of Structure Genome (SG) is proposed. SG is the smallest mathematical building block containing all the constitutive information for a structure. The Mechanics of Structure Genome (MSG) represents a revolutionary approach to multiscale modeling drastically different from the conventional bottom-up multiscale modeling approaches. The principle of minimum information loss (PMIL) is used to avoid a priori assumptions commonly invoked in other approaches. MSG confines all approximations to the constitutive modeling which can construct constitutive models for all types of structures including 3D solids, 2D plates/shells, and 1D beams, directly linking the structural properties with microstructural details. MSG simplifies multiscale constitutive modelling to answer three fundamental questions: 1) what is the original model needed for capturing relevant physics? 2) what is the model wanted for a particular design? 3) what is the SG? MSG allows one to choose the starting scale and ending scale and capture details as needed and affordable without invalid scale separation and assumptions within scales. A companion code called SwiftComp is developed as a general-purpose constitutive modeling software which can be used as a standalone code for virtual testing of structures and materials and as a plugin for conventional finite element software packages such as Abaqus, Ansys, Nastran with efficient high-fidelity composites modeling capabilities. SG concept is applicable to any structures and materials featuring heterogeneity and anisotropy including but not limited to composite materials, 3D printed materials, metamaterials, biomaterials, auxetic materials, smart materials, soft materials, etc.

Biographical Sketch: Dr. Wenbin Yu is a Professor in the School of Aeronautics and Astronautics at Purdue University after serving ten years as a faculty at Utah State University. He received his PhD in Aerospace Engineering from Georgia Tech and MS in Engineering Mechanics from Tsinghua University, China. He serves as Director for the Composites Design and Manufacturing HUB (cdmHUB.org), and Associate Director for the Composites Virtual Factory HUB (cvfHUB.org), and is the CTO for AnalySwift LLC (analyswift.com). His expertise is in micromechanics and structural mechanics with applications to composite/smart materials. He has developed several computer codes used today by thousands of researchers and engineers in government labs, universities, research institutes and companies. He is an ASME Fellow and AIAA Associate Fellow. He served as the chair for ASME Structures and Materials Technical Committee and currently serves as the vice chair for AIAA Materials Technical Committee. He serves on the editorial boards of two international journals.

Computational Design Optimization

Abstract: Our ability to manufacture now greatly exceeds our ability to design. Engineers are no longer merely inconvenienced by inefficient trial-and-error design; rather, they are nearly incapacitated by the vast space of possible designs afforded by Advanced Manufacturing (AM) technologies. There are no systematic methods to design systems with such complexity, especially those that exhibit nonlinear, transient, multiscale, and multiphysics phenomena with uncertain behavior.

The opportunity and need to fundamentally transform design is one of the most compelling frontiers of engineering research.  To this end, the Lawrence Livermore National Laboratory’s newly instantiated Center for Design and Optimization is developing algorithms that can optimize immensely complex systems in High Performance Computing (HPC) environments. The complexity comes from two sources, design and physics. Design complexity refers to the intricate shape and material layouts that are made possible by today’s AM technologies; it can take the form of structural composites with intricate morphologies. It also refers to the multifunctional metrics that we optimize, e.g., we maximize electromagnetic response subject to local strength and global mass constraints. And finally, it refers to constraints dictated by the AM processes to ensure manufacturable designs. Physics complexity comes from the mathematical models that are used to predict the performance of our designs. Such models require the solution of partial differential equations that contain complicated nonlinearities, transients, multiple scales, multiple physics, and uncertainties. We iterate through the design space, solving the physics equations using numerical methods. Because our design Degrees-Of-Freedom (DOF) and physics DOF are in excess of 100 million, we must develop efficient, large-scale HPC algorithms. This effort will enable engineers to optimize designs that exhibit unprecedented performance relative to current practice; it is not optional: it is an absolute necessity if we want to drive future innovation.  The work offers immense challenges in engineering, math and HPC.

Biographical Sketch: Daniel A. Tortorelli is the Director for the Center of Design and Optimization at the Lawrence Livermore National Laboratory and the George B. Grim Professor Emeritus at the University of Illinois at Urbana-Champaign (UIUC).  He received his BSME degree from the University of Notre Dame du Lac in 1984 and his MSME and PhD degrees from the UIUC in 1985 and 1988.  His professional career began as senior project engineer for General Motors Advanced Engineering Staff.  In 1990, he embarked on an academic career at UIUC and stayed there until he retired in 2016 to begin his new career at LLNL.