Past Seminars

Mesoscale Physics and Stochastics in Energy Storage

WebEx Link: http://s.uconn.edu/meseminarf20

Password: Sent by Email.

Abstract: Advances in electrochemical energy storage are critical toward enabling vehicle electrification and renewable energy integration into the electric grid. Recent years have witnessed an urgent need to accelerate innovation toward realizing improved and safe utilization of high energy and power densities, for example in lithium-ion batteries for electric vehicles. These are complex, dynamical systems which include coupled processes encompassing electronic/ionic/diffusive transport in solid/electrolyte phases, electrochemical reactions, diffusion induced stress generation, and thermal transport in porous electrodes. Fundamental understanding of the underlying transport, chemistry, microstructure, and interface interactions in porous electrode architectures is of critical importance. This talk will highlight the role of mesoscale complexations and stochasticity with examples from different battery chemistries.

Bio Sketch: Partha P. Mukherjee is currently an Associate Professor of Mechanical Engineering at Purdue University. Before joining Purdue, he was an Assistant Professor and Morris E. Foster Faculty Fellow of Mechanical Engineering at Texas A&M University (TAMU). Prior to starting his academic career at TAMU in 2012, he worked for four years in the U.S. Department of Energy Labs; a staff scientist (2009- 2011) at Oak Ridge National Laboratory, and a Director’s research fellow (2008-2009) at Los Alamos National Laboratory. He received his Ph.D. in Mechanical Engineering from the Pennsylvania State University in 2007. Prior to PhD studies, he worked as an engineer for four years at Fluent India Pvt. Ltd, a fully-owned subsidiary of Fluent Inc., currently Ansys Inc. He received the Scialog Fellows’ recognition for advanced energy storage, Purdue University Faculty Excellence Award for Research, visiting faculty lectureship at the International Center for Theoretical Physics (ICTP, Trieste, Italy), TMS Young Leaders Award, emerging investigator distinction from the Institute of Physics, to name a few. His research interests are focused on mesoscale physics and stochastics of transport, chemistry and microstructure interactions, including an emphasis in the broad spectrum of energy storage and conversion.

Using BME Modeling Tools to Aid in Clinical Diagnosis of Orthopedic Injuries

Webex Link: http://s.uconn.edu/meseminarf20km

Abstract: Over 250,000 anterior cruciate ligament (ACL) injuries occur every year in the United States alone, costing over $1.5 billion dollars in rehabilitation and reconstruction care. However, despite extensive rehabilitation, upwards of 56% of individuals fail to return to previous functional levels years after treatment due to lingering neuromuscular impairments. These impairments result in inactivity and the development of osteoarthritis (OA), osteoporosis and cardiovascular disease, which are estimated to cost $62.1 billion, $14 billion, and $316.6 billion, respectively, a year in their own right. Thus, the total cost of these injuries indicates a much bigger problem than we realize. The prevalence of early onset OA in the post-ACL reconstruction population indicates the need for a better understanding of the relationship between neuromuscular control and musculoskeletal dynamics to improve the effectiveness of post ACL injury rehabilitation care. Therefore, the objective of our work is to pioneer new post ACL rehabilitation modalities that produce positive gait adaptation by combining innovative experimental studies, machine learning and computational modeling to engineer novel gait protocols and dynamic braces that better support the knee by engaging muscles during dynamic movement. 

Biographical Sketch: Dr. Kristin Morgan is an Assistant Professor in the Biomedical Engineering at the University of Connecticut. She received her B.S., M.S., and Ph.D. degrees all in Biomedical Engineering from Duke University, Virginia Commonwealth University, and the University of Tennessee, respectively. She was a postdoctoral scholar at the University of Kentucky where she was awarded the Lyman T. Johnson Postdoctoral Fellowship. Dr. Morgan has also been the recipient of a Whitaker International Summer Grant Fellowship and is a National Institutes of Health Program for Excellence & Equity in Research (PEER) Fellow, and a United States Bone and Joint Institute Young Investigator. Dr. Morgan’s research interests are focused on the identification of novel rehabilitation protocols to optimize long-term lower extremity injury outcomes and innovative metrics to identify the restoration of healthy neuromuscular control. Her work has been funded by General Dynamics Electric Boat and the Office of Naval Research.

Is Combustion a Dirty Word?

Abstract: Wajid’s presentation is weirdly titled, “Is Combustion a Dirty Word?” a question that challenges the combustion engineers like himself. In the presentation he will share the experiences from his work at National Research Council Canada and Virginia Tech. Specifically, drawing examples from his contributions to the National Jet Fuel Combustion Program, he will touch upon the dynamics of liquid-fuel combustion in a gas turbine engine and the key fuel properties that significantly affect the combustor performance and emissions characteristics. He will also present his view on the future needs and opportunities with respect to liquid fuels and combustion.

Biographical Sketch: Wajid is a Program Director at the National Research Council Canada. He holds a PhD in Mechanical Engineering from Virginia Tech, a MSE in Aerospace Engineering from University of Michigan and an MBA in Finance from University of Karachi. Wajid has more than 30 years of experience in the areas of gas turbine maintenance, repair and overhaul, combustion research and teaching. He has authored many well-cited publications and is a member of a number of national and international professional committees and societies. His research interest is on the dynamics of droplets and bubbles, as applicable to aero-engines and many other engineering disciplines. In the last six years, Wajid has held senior management positions directing applied research in the fields of energy and aeronautics and managing technology transfers.

 

Investigating the Role of Stem Cell Mechanobiology in Tendon Degeneration

Abstract: Tendon and ligament injuries account for 20-30% of all musculoskeletal disorders and are the most common form of non-fatal occupational injury resulting in over 420,000 days away from work each year. A primary cause of tendon degeneration is overuse (i.e., fatigue loading), which produces repeated microscale damage of the load-bearing collagen fibrils as well as the accumulation of atypical matrix components (e.g., cartilaginous, fat, and calcium deposits) that further weaken the tissue and drive the progression of degeneration. Production of these atypical matrix deposits requires the synthetic activity of cells with abnormal (i.e., non-tenogenic) phenotypes. Previous in vitro experiments demonstrate that endogenous tendon stem/progenitor cells (TSPCs) are multipotent and undergo non-tenogenic differentiation in response to mechanical stimuli. Therefore, it is hypothesized that the atypical matrix deposits observed in degenerated tendons are produced by endogenous TSPCs in response to tendon fatigue loading. However, in vitro mechanobiology studies of isolated TSPCs on artificial substrates do not replicate the mechanical stimuli, cell-matrix interactions, and cell-cell communication that are present in the native tendon microenvironment. As a result, there is a fundamental lack of knowledge regarding the response of TSPCs to the local tissue damage induced by tendon fatigue loading.

In this talk, I will present our work investigating how tendon microscale mechanics are altered with tissue damage. I will then discuss how these changes alter the biophysical stimuli (e.g., topography, modulus, strain) presented to tendon cells and how this may affect stem cell behavior. Finally, I will introduce our current work developing an ex vivo model of fatigue-induced tendon degeneration. This model will enable us to identify how TSPCs respond to fatigue damage and altered biophysical stimuli within their native microenvironment. Ultimately, this information will help determine the mechanisms driving tendon degeneration and develop novel treatment strategies to promote tissue repair.

Biographical Sketch: Dr. Szczesny is currently an Assistant Professor at the Pennsylvania State University with a joint appointment in the Departments of Biomedical Engineering and Orthopaedics & Rehabilitation. He completed his postdoctoral training in 2017 as an NIH NRSA F32 Fellow and obtained a PhD in Bioengineering in 2015 at the University of Pennsylvania. Prior to his doctorate, Dr. Szczesny developed medical implants as a Design Engineer for Aesculap Implant Systems and as a research assistant at the Helmholtz Institute for Biomedical Technology in Aachen, Germany. He obtained a MS in Mechanical Engineering at the Massachusetts Institute of Technology in 2005 and a BS in Mechanical Engineering at the University of Pennsylvania in 2003. In recognition of his contribution to the field of soft tissue biomechanics, Dr. Szczesny was an ORS New Investigator Recognition Award Finalist, won 1st place in the SB3C PhD competition (twice), and received the Acta Student Award. Dr. Szczesny’s current research examines how cells in tendon sense the mechanics of their local microenvironment (e.g., strains, stiffness) and how their response drives changes in tissue mechanical properties during tendon degeneration, repair, and development. The ultimate goals of this work are to identify the causes of tendon pathology, discover novel therapeutic options, and direct the design of biomaterials that can recapitulate the behavior of native tissue. Furthermore, his research will produce fundamental knowledge regarding the feedback loop between local tissue mechanics and cellular mechanobiology, which is an important contributor to numerous diseases outside orthopaedics, including aortic aneurysms and fibroproliferative disorders.

Harnessing Small Signaling Molecules for Bone Regenerative Engineering: A Convergence Approach

Abstract: Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small-molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and several small molecule compounds have been recently discovered as potential signaling molecules for skeletal tissue repair and regeneration. However, a major challenge associated with utilizing these small molecules to regenerate a specific tissue/organ is the delivery of the therapeutic compounds directly to the target site to minimize potential systemic side effects. The presentation will focus on our recent work with small molecules that have the capacity to promote osteoblast differentiation and mineralization. Several proactive controlled delivery approaches have been developed in order to minimize off-target side effects of small molecules and will also be discussed.

Biographical Sketch: Dr. Kevin Lo is an Assistant Professor in the Department of Medicine at UConn Health and an Affiliate Faculty Member in the Department of Biomedical Engineering and the Institute of Materials Science at UConn. He also serves as the Assistant Director of Education for the Connecticut Convergence Institute for Translation in Regenerative Engineering at UConn Health. In addition, he has held editorial positions on several prestigious international peer-reviewed journals including PLoS ONE and Journal of Racial and Ethnic Health Disparities. His broad research interests are regenerative engineering, drug delivery, biochemistry and cellular molecular biology. He has authored more than 45 publications in these areas. Research grants from NIH, NSF, State of Connecticut, UConn School of Medicine, and private foundation have supported his work in the institute. His current research programs include musculoskeletal regeneration using inductive small molecules and osteotropic nanoscale drug delivery systems. He is a board member of the Regenerative Engineering Society of American Institute of Chemical Engineers (AIChE). Dr. Lo has led a NSF-funded summer research program to recruit a number of under-representative students to the Connecticut Convergence Institute for hand-on research experience in the areas of biomedical engineering. Dr. Lo is very active in community engagements. He has organized the Kavli Science Café and the Aetna Health Café monthly seminar series programs which aim to bring science and novel healthcare concepts to the local underserved community groups in Connecticut. 

Mechanics in Electrochemistry: From Energy Storage to Energy Harvesting

Abstract: Rechargeable batteries function by reversible ion shuttling between the electrodes through the electrolytes. However, large amount, high rate ion diffusion and insertion induces large deformation in constituent materials in battery cells, leading to material failure, and consequently irreversible capacity decay and poor cyclability. How do mechanics and electrochemistry reciprocally influence one another in battery charge-discharge cycling? How might the mechanics-electrochemistry coupling be harnessed and regulated for energy storage and energy harvesting, and how might it be unharnessed and dysregulated in battery degradation? These questions have been stimulating new understandings at the interfaces of mechanics, materials, and electrochemistry. In this talk I will highlight a set of exciting electro-chemo-mechanical phenomena, enabled by advanced in-situ transmission electron microscopy and rationalized by multiscale, multiphysical modeling. Emphasis will be placed on the fundamental principles of mechanics and electrochemistry that underlie materials, designs, and devices. 

Biographical Sketch: Dr. Sulin Zhang received his PhD from the Department of Engineering Mechanics, University of Illinois, Urbana-Champaign in 2002. He then worked as a postdoctoral fellow in Northwestern University. He is currently a Professor in Department of Engineering Science and Mechanics and Department of Biomedical Engineering at Penn State University. Dr. Zhang’s research has been focused on the roles of mechanical forces and stresses in materials, biology, chemistry, and medicine. He is the recipient of the Early Career Development Award from National Science Foundation in 2007, the PSEAS Outstanding Research Award in 2016 from Penn State. Dr. Zhang is severing as an Associated Editor for Extreme Mechanics Letters, and an editorial board member for Nature Partner Journal-Computational Materials.

Mechanical Engineering Lightning Talks

Join us at our Department at our ME Lightning Talks to learn about the exciting research that some of our ME Faculty and their groups are involved with!  Pizza will be provided.  Since space is limited, this event is limited to ME graduate students and faculty, and a limited number of ME undergraduate seniors.

Transforming Metal Casting Science for the 21 st Century – Role of 3D Design Principles and Smart Sand Molds

Abstract: Over 90% of all manufactured goods and machinery use a cast part. Sand casting is a manufacturing process that dates back to 1000 BC and accounts for 70% of all cast parts. Sand casting has several critical applications in a variety of sectors including defense, energy, aerospace and automotive. However, conventional sand casting is regarded as a process of uncertainty due to its tendency to render higher scrap rates even in completely controlled processing environments. Casting defect analysis shows that over 90% of casting defects occur due to improper gating and feeding systems. This talk will present a novel approach to rethink the design principles for: (1) sand cast parts and (2) gating and feeding systems to reduce defects in a given casting, alloy systems and pouring conditions. A systematic framework for the design, hybrid molding and instrumentation of molds for sand castings is presented for alloys of varying freezing ranges and pouring conditions. Results from numerical analysis, computational melt flow simulations and experimental evaluation show that 3D Sand-Printing can lower melt flow turbulence in castings which reduces casting defects (35% reduction) and improves as-cast mechanical properties (8.4% increase in flexural strength). Finally, early results from concurrent efforts to digitize the entire workflow of sand casting into wireless ‘Casting 4D’ is presented to visualize melt flow in sand molds.

Biographical Sketch: Dr. Guha Manogharan is an Assistant Professor of Mechanical Engineering and an Affiliate Assistant Professor of Industrial and Manufacturing Engineering at The Pennsylvania State University – University Park. He heads the Systems for Hybrid – Additive Processing Engineering – The SHAPE Lab located in Innovation Park, Penn State. His research areas include additive and hybrid manufacturing, 3D Sand-Printing for novel metal casting processes, material development, and inter-disciplinary mechanical, biomedical and aerospace applications of additive manufacturing. Dr. Manogharan received his Ph.D. and M.S. in Industrial and Systems Engineering from North Carolina State University. He was awarded the 2018 International Outstanding Young Researcher in Freeform and Additive Manufacturing Award (FAME Jr), 2017 Society of Manufacturing Engineers’ Yoram Koren Outstanding Young Manufacturing Engineer Award and the 2016 Outstanding Young Investigator by Manufacturing and Design Division of Institute of Industrial and Systems Engineering.

Design for Additive Manufacturing: Three Use Cases and Their Implications

Abstract: A pattern is emerging among companies adopting metal-based additive manufacturing (AM).  In the first stage, they use AM to replicate an existing part to understand the technology’s costs and capabilities.  This gives them insight into AM processes and allows them to move onto the second stage wherein they adapt their designs for AM to reap more of its benefits—leveraging the design and material freedoms that AM affords.  Finally, companies will shift to optimizing for AM as they gain confidence in an AM process while learning how to capitalize on AM to its full potential. These three stages can be effective when designing for AM, but only if expectations are carefully managed at each stage.  Automotive, aerospace, consumer goods, and oil and gas examples from Penn State’s Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D) are presented to illustrate the benefits and drawbacks of each stage. CIMP-3D served as the Manufacturing Demonstration Facility (MDF) for Additive Manufacturing for DARPA’s Open Manufacturing Program.  In this role, CIMP-3D toured more than 6,000 visitors, organized a dozen technical forums and exchanges, and instituted the first hands-on industry practicum for metal AM. Efforts to educate the next generation workforce and (re)train the current workforce to use AM effectively and design for AM will also be discussed.

Biographical Sketch: Dr. Simpson is the Paul Morrow Professor of Engineering Design & Manufacturing at Penn State with affiliate appointments in Architecture and Information Sciences & Technology.  He serves as the co-Director of CIMP-3D (www.cimp-3d.org) and directs the world’s first interdisciplinary graduate program in Additive Manufacturing & Design.  He has been PI or Co-PI on over $25M in funding for research in additive manufacturing and 3D printing, product family and product platform design, and multidisciplinary design optimization, including surrogate modeling and trade space exploration.  He has published over 350 peer-reviewed journal and conference papers and 2 edited textbooks, and he contributes a monthly column to Modern Machine Shop called “Additive Insights”.  He is a recipient of ASME’s Design Automation Award, Robert E. Abbott Award, and Ben C. Sparks Award as well as the ASEE Fred Merryfield Design Award.  He has received numerous awards for outstanding research and teaching at Penn State, including the 2019 Teaching and Learning with Technology Impact Award.  He is a Fellow in ASME and an Associate Fellow in AIAA. He chaired the ASME Design Engineering Division Executive Committee and the ASME Design, Manufacturing, and Materials (DMM) Segment Leadership Team.  He helped ASME launch the Innovative Additive Manufacturing 3D (IAM3D) Design Challenge in 2014, and he served as the chair of ASME’s industry-focused Additive Manufacturing & 3D Printing Conference & Expo in 2015 and 2016.  He received his Ph.D. and M.S. degrees in Mechanical Engineering from Georgia Tech and his B.S. in Mechanical Engineering from Cornell.