Events and Seminars

Computational Fluid dynamics modeling of industrial-scale fires

Friday, September 11 • 2:30 PM – UTEB, Rm. 175

Computational Fluid dynamics modeling of industrial-scale fires

Dr. Ning Ren

Fire Hazard and Protection Group FM Global

Abstract: Fire is one of the major causes of property loss. According to the National Fire Protection Association, more than ten billion dollars in fire-induced property damage are incurred annually in the US alone. Understanding fire behavior and improving the design of fire suppression systems are critical steps that can lead to the reduction of fire losses. To this end, fire testing at different physical scales has historically been used at FM Global to provide engineering fire protection solutions/guidelines. In recent years, however, much of this testing has been carried out using computational fluid dynamics (CFD)- based numerical modeling. A novel open-source fire modeling CFD tool has been developed by FM Global (firefoam) and it is designed for modeling the complex interactions of fire related phenomena such as buoyancy driven turbulence/combustion, flame radiation, condensed-phase pyrolysis, sprinkler spray and film flow transport, and suppression. The availability of a fire simulation tool, such as FireFOAM, can not only provide fundamental physical insights into fire dynamics and suppression, but also help design large-scale fire tests more effectively and efficiently. Moreover, numerical modeling can be used to explore some challenging practical scenarios where testing may be difficult, if not impossible, to conduct. In this talk, two numerical studies will be presented to illustrate the use of CFD modeling in fire loss prevention. The first configuration consists of a Class 2 rack storage array, a standard fuel and storage arrangement that is used for the purposes of commodity classification as well as the evaluation of fire protection systems. The second case corresponds to a storage configuration of vertically stacked paper rolls, which is a typical fire hazard in the pulp and paper industry. Details on various sub-models, including pyrolysis, turbulent flow, and flame heat transfer will be presented. Modeling results for two rack storage configurations (3- and 5-tier high) and two roll paper configurations (2- and 3-roll high) will be compared to available experimental data. Modeling results for two additional configurations (7-tier high rack storage and 6-roll high roll paper), for which no experimental data are available, will also be provided.

Biographical Sketch: Dr. Ren obtained his B.S. in Fire Safety Engineering from University of Science & Technology of China (USTC) in 2005, M.S. in Fire Protection Engineering in 2007 and Ph.D. in Mechanical Engineering in 2010 from University of Maryland – College Park (UMD). He was a postdoctoral associate at Department of Fire Protection Engineering at UMD from 2011 to 2012, before joining FM Global as a senior research scientist. He works on fire suppression modeling using Largeeddy simulation based fire simulator. His research area includes pyrolysis modeling, flame extinction and suppression modeling.

For additional information, please contact Prof. Xinyu Zhao at (860) 486-0241, xinyuz@engr.uconn.edu or Laurie Hockla at (860) 486-2189, hockla@engr.uconn.edu

Designing Shape Memory Materials for Damping, Actuation, and Energy Applications

Wednesday, June 24 • 1:30 PM – Biology/Physics Building (BPB), Rm. 130

Designing Shape Memory Materials for Damping, Actuation, and Energy Applications

Ying Chen

Assistant Professor of Materials Science and Engineering Rensselaer Polytechnic Institute, Troy, NY

Abstract: Shape memory alloys have the remarkable capability to switch between two “programmed” geometries upon the application and removal of stimuli such as stress, heat, or magnetic field. Their shape memory properties result from a diffusionless and crystallographically reversible martensitic phase transformation that occurs by shear. However, many polycrystalline shape memory alloys are limited by their inherent brittleness caused by severe stress concentration at grain boundaries during martensitic transformations. In this talk, I will present two strategies that we have developed to overcome this limitation. I will discuss our recent work on small scale oligocrystalline alloys with bamboo grain structures, and potential technological developments that can result from our understanding of the small-scale properties and size effects. When bulk polycrystalline structures are desirable, we design dual-phase alloys in which a ductile nontransforming second phase is precipitated along grain boundaries to cushion the grain boundaries and alleviate stress concentrations. Oligocrystalline and polycrystalline shape memory alloys with excellent shape memory properties and mechanical durability are promising for many damping, actuation, and energy applications.

Biographical Sketch: Dr. Ying Chen earned her B.S. in Materials Science and Engineering from Tsinghua University in Beijing, China in 2004 and Ph.D. in Materials Science and Engineering from MIT in 2008. She was a postdoctoral associate at the MIT Institute for Soldier Nanotechnologies from 2008 to 2010, before joining GE Global Research Center in Niskayuna, NY as a materials scientist. She worked on high temperature superalloys at GE GRC for a little over a year, and then joined the Rensselaer faculty at the end of 2011. Her research focuses on elucidating microstructure-mechanical property relationships in metallic materials using both experimental and mesoscale modeling approaches.

For additional information, please contact Prof. Michael T. Pettes at (860) 486-2855, pettes@engr.uconn.edu or Laurie Hockla at (860) 486-2189, hockla@engr.uconn.edu

Electronic Transport in Topological Insulator Nanostructures

Wednesday, June 10 • 1:30 PM – Biology/Physics Building (BPB), Rm. 130

Electronic Transport in Topological Insulator Nanostructures

Luis A. Jauregui

Postdoctoral Associate, Philip Kim Group Department of Physics, Harvard University, Cambridge, MA

Abstract: I will describe our recent transport experiments on topological insulator materials such as Bi2Te3 and BiSbTeSe2 nanoribbons (TINRs). We were able to successfully distinguish the bulk and surface carriers. The experiments have particularly revealed a list of unique transport signatures of the spin-helical, Dirac fermion topological surface states, and provide ways to access and utilize such surface states in novel topological quantum devices. Topological insulators (TI) are gapped band insulators in the bulk, but have nontrivial, “topologically protected”, spin-helical conducting states with gapless Dirac fermion dispersion on the surface. Such “topological surface states” are considered promising platforms to explore various novel physics ranging from quantum anomalous Hall effect, Majorana fermions to excitonic condensation. However, electronic transport of topological surface states in real TI materials is easily obscured by competing conduction channels that include the bulk as well as the “conventional” 2D electron gas (2DEG) formed by band bending at the surface. This is a major challenge in current experiments and device applications involving topological insulators. In this talk, I will describe our recent electron transport experiments on TI materials based on Bi2Te3 and BiSbTeSe2. We have explored ways to reduce the bulk conduction, and revealed a list of unique electronic transport signatures of the spin-helical, Dirac fermion topological surface states. In addition, we have also measured induced superconductivity in TINRs. These experiments may facilitate better access and control of TI surface states to explore the more exotic physics and applications in topological quantum devices.

Biographical Sketch: Dr. Luis Jauregui earned his B.S. in Electrical Engineering from National University of Engineering in Lima, Peru in 2007 and his Ph.D. in the area of micro and nanotechnology from the Department of Electrical and Computer Engineering at Purdue University in 2015. He was the recipient of the Intel Ph.D. fellowship for the years 2012 – 2013 and the Purdue Research Foundation Fellowships 2013 – 2015. Currently, he is a postdoctoral associate in the Department of Physics at Harvard University. His research focuses on experimental investigations of electron transport in low dimensional systems like nanowires, and two dimensional layered materials.

For additional information, please contact Prof. Michael T. Pettes at (860) 486-2855, pettes@engr.uconn.edu or Laurie Hockla at (860) 486-2189, hockla@engr.uconn.edu

Around Engineering

Around Engineering

Engineering doctoral candidates Juan Pablo Correa Baena and Lu Han, GK-12 Fellows supported by a National Science Foundation grant, recently received travel grant funding from the NASA Connecticut Space Grant College Consortium.

The funds will allow Juan Pablo and Lu to travel to the NASA Great Moonbuggy Race, to be held in Huntsville, Alabama in April, with students from Connecticut Technical High Schools where the GK-12 Fellows are embedded. As competitors in the Moonbuggy Race, the student teams will design and manufacture a moonbuggy vehicle from recycled bicycles donated by local bike shops. The completed vehicles must then prove their superior maneuverability, stability and speed in a race over simulated Martian terrain.

……………..

Bringing Comfort to Newtown

In response to the unfathomable Sandy Hook Elementary School tragedy in Newtown, CT last month, one of UConn Engineering’s own, Sharon L. McDermott, a Program Coordinator in the Undergraduate Program Office, joined a team of handlers and registered therapy dogs during the holidays to bring comfort to children and adults dealing with the trauma of that horrific event.  The group, which is associated with the Tails-U-Win Dog Training Center in Manchester, CT, is working with Newtown authorities to reprise their visit as the community continues to navigate the healing process.

Sharon’s dog, Cooper, is a five-year old purebred English Setter registered with Delta Society. Sharon reports that to become certified, prospective therapy dogs and their handlers must pass three levels of certification and testing.  The process usually takes about a year.  Sharon became involved in the program soon after losing her mother to breast cancer and witnessing the degree of comfort provided by her mother’s dog during her final days. Cooper and Sharon have an additional security clearance to visit Eastern Connecticut Health Network (ECHN) affiliated hospitals, nursing homes and other facilities.  View more photos here (requires login).

……………..

ME Alumni and Friends Celebrate
On October 27, 2012, faculty and staff from the Mechanical Engineering (ME) Department hosted a gathering of approximately 60 ME alumni, friends and emeriti faculty members.  The day’s events combined informative and social activities, and included presentations by Department Head Baki Cetegen and Provost Mun Y. Choi, who is a professor of Mechanical Engineering as well as UConn’s chief academic officer.

Visitors were treated to a barbecue luncheon followed by lab tours and demonstrations on virtual reality, cardiovascular mechanics, gas turbine engines as well as mini lectures on sustainable energy and novel sensors in mechanical engineering.  Concurrently, family members were free to tour campus, visit the animal barns and enjoy award-winning ice cream at UConn’s Dairy Bar.  The day’s events concluded with dinner.  Dr. Cetegen said the success of this first-ever event, and the enthusiasm expressed by attendees, makes it a certainty the Alumni Days will be reprised in future years.