Department Achievements

CASE Honors Two UConn Mechanical Engineers

 

Dr. Barber has served as a professor-in-residence in the Mechanical Engineering Department since joining UConn in 2000.  He enjoyed a distinguished career with Pratt & Whitney and the United Technologies Research Center prior to joining UConn.  Dr. Barber is an Associate Fellow of AIAA and a member of ASME, and he has served as an Associate Editor of the AIAA Journal for Propulsion and Power.  His induction into CASE recognizes his contributions to computational fluid mechanics, his leadership in expanding and managing the professional Master of Engineering (MENG) degree program and oversight and expansion of the Mechanical Engineering senior design program.

Dr. Chiu is a professor of Mechanical Engineering who is recognized for his pioneering work in heat and mass transfer, including his development of new approaches to understanding micro- and nano-structure induced transport phenomena in energy, photonics and semiconductor materials.  Dr. Chiu’s honors include the Rutgers University School of Engineering Medal of Excellence Award for Distinguished Young Alumni, the ASME Bergles-Rohsenow Young Investigator Award in Heat Transfer, the U.S. Army Research Office Young Investigator Award, a National Science Foundation CAREER Award and the Office of Naval Research Young Investigator Award.  He is an Associate Editor of the ASME Journal of Heat Transfer and the International Journal of Thermal Sciences.

Innovators Feted

 

innovate2UConn Engineering was well represented during the Second Annual Celebration of Innovation, presented by the UConn Office of Economic Development on April 10th. The gala event (see event photos here) afforded the innovation community an opportunity to network and to celebrate the achievements of some of its most outstanding members. Read a related story here. Importantly, the event underscored the vital linkages among academic innovation, commercialization and economic impacts that benefit the State of Connecticut. According to Dr. Mary Holz-Clause, UConn’s Vice President of Economic Development, in the past year, UConn researchers have developed 80 new inventions and filed 42 U.S. patents, and the university has signed 10 license deals. Commercializing university innovations is a growing resource for the university that has generated $1.2 million in patent revenue alone in the past year. “UConn, thanks to the innovative research done by our faculty and students, is re-inventing industries and driving new innovations.  The Celebration of Innovation is an opportunity to recognize the contributions the university is making in not only reshaping the state’s economy but also having a meaningful impact globally,” said Dr. Holz-Clause. Among the honorees were Dr. David “Ed” Crow, General Electric Corporation, and engineering faculty members who received U.S. patent awards in the last year.

Dr. David “Ed” Crow, professor emeritus of Mechanical Engineering (2002-11) and a 36-year Pratt & Whitney employee, was honored with the Innovation Champions – University Employee Award.  An elected member of the prestigious National Academy of Engineering, Dr. Crow has served as an outstanding role model throughout his engineering and academic careers.  In 2011, he established the D.E. Crow Innovation Prize at UConn, which helps engineering students turn their entrepreneurial inspirations into marketable products through seed funding. Dr. Crow joined Pratt & Whitney in 1966 and rose to the position of Senior Vice President of the company’s Engineering, where he oversaw 6,600 engineers responsible for the design, development, validation and certification of all Pratt & Whitney large commercial engines, military engines and rocket products.  Earlier, he served as Senior Vice President for the company’s Large Commercial Engines unit.  He is a past secretary of the SAE, a member of ASME and AIAA, and an elected member of the University of Missouri-Rolla Academy of Mechanical Engineers and the UConn Academy of Distinguished Engineers. Earning the Collaborator of the Year Award, which is presented to a partner whose collaboration is likely to have a strong and lasting impact on the State economy, was General Electric Corporation. Last fall, GE Industrial Systems expanded its partnership with UConn Engineering through a five-year, $7.5 million investment that includes an endowed professorship, undergraduate scholarships, graduate fellowships, and $3.3 million in funding for company directed research at UConn, focused on electrical-protection technologies, including circuit breaker technologies.   The investment brings together researchers from various academic disciplines and from the energy industry to conduct R&D on core electrical-protection technologies, including circuit breakers. Paul Singer, Technology General Manager of GE Industrial Systems, accepted on behalf of GE.

New Patents In addition, a number of UConn mechanical engineering faculty members were honored for their receipt of U.S. patents during the 2012-13 year. They are listed below: Baki Cetegen and Michael Renfro (Mechanical Engineering) – Fiber Optic Based In-Situ Diagnostics for PEM Fuel Cells, U.S. Patent # 8,268,493 Bahram Javidi (Electrical & Computer Engineering) ·  Depth and Lateral Size Control of Three-Dimensional Images in Projection Integral Imaging, U.S. Patent # 8,264,722 ·  Optical Data Storage Device and Method, U.S. Patent # 8,155,312 ·  Optical Security System Using Fourier Plane Encoding, U.S. Patent # 8,150,033 ·  System and Method for Recognition of a Three-Dimensional Target, U.S. Patent # 8,150,100 Aggelos Kiayias (Computer Science & Engineering) – Systems and Methods for Key Generation in Wireless Communication Systems, U.S. Patent # 8,208,628 H. Russell Kunz (Chemical & Biomolecular Engineering, Center for Clean Energy Engineering) andLeonard Bonville (Center for Clean Energy Engineering) – Bipolar Plate for Fuel Cell, U.S. Patent # 8,097,385 Richard Parnas (Chemical & Biomolecular Engineering) and Nicholas Leadbeater (Chemistry) – Systems for Alkyl Ester Production, U.S. Patent # 8,119,832 Lei Wang (Electrical & Computer Engineering) – Error-Tolerant Multi-Treaded memory Systems with Reduced Error Accumulation, U.S. Patent # 8,190,982 Quing Zhu (Electrical & Computer Engineering) – Method and Apparatus for Medical Imaging using Near-Infrared Optical Tomography and Fluorescence Tomography Combined with Ultrasound, U.S. Patent # 8,239,006

Student News

Student News

Read below for the following exciting news items:
  •   Rufat Kulakhmetov to Attend 2013 NASA Academy
  •  Joseph Mummert a NSF Grad Honorable Mention

Mechanical Engineering junior Rufat Kulakhmetov, has been selected one of just 15 students nationwide to participate in the 2013 NASA Propulsion Academy located at the Marshall Space Flight Center, Huntsville, AL.  The 10-week, residential summer research and educational experience is reserved for top students interested in propulsion and is a pipeline intended to prepare young professionals for employment in aerospace positions. As an intern, Rufat will work on a four-person team under the guidance of propulsion engineers at Marshall, local commercial entities, and local universities. A New England Scholar, Rufat currently works in the Combustion and Gas Dynamics Laboratory (adv.: Mike Renfro).

M.S. degree candidate Joseph Mummert (Mechanical Engineering) received an honorable mention for his submission for a 2013 NSF Graduate Research Fellowship.  Joseph is advised by Dr. Wei Sun, with whom he expects to launch a business, ValveFix, LLC, in the future. ValveFix designs, manufactures and distributes an FDA-approved, durable tissue heart valve for young and old patients that eliminates the need for repeat open-heart surgeries and requires no anti-coagulation drugs. The valve relies on a patented, biocompatible, coated valve that offers superior structural stability and anti-calcification.

Published on: Apr 25, 2013

Whitcraft: Leveraging a Unique Talent Pipeline

Whitcraft: Leveraging a Unique Talent Pipeline

Tucked away in the Quiet Corner of Northeastern Connecticut is a mid-sized company that has been serving the world’s leading aerospace companies for decades,Whitcraft, LLC.  At the company’s Eastford facility, nearly 300 employees carry out highly technical specialty sheet metal fabrication and machining for companies like Pratt & Whitney, GE Aviation, Rolls Royce, Honeywell and other top names in aerospace.

Whitcraft is a good neighbor to the community, hiring high school and college students for co-ops and internships, and building an employment pipeline that spans Ellis Technical High School in Danielson, Quinebaug Valley Community College and UConn to fill its needs for qualified, innovative engineers.  “Our employees are world-class technicians,” says Sandy Karosi, HR Manager. 

Karosi, Engineering Manager Allen Roy and a rep from sister company Connecticut Tool and Manufacturing have attended the UConn Engineering Career Fair each year since 2008.

Among the company’s valued employees are four UConn Engineering alumni, including Chad Chmura, a Junior Engineer who received his B.S. in Mechanical Engineering in 2012. 

Whitcraft usually hires one or two year-round interns each year. The company recruits juniors and seniors, with the intention of hiring them after they earn their degrees.  Whitcraft has a long tradition of recruiting co-op students from Ellis Tech because “These students often have job shop experience, and that knowledge puts them much further ahead,” according to Karosi, who adds, “When we recruit interns, we look for students who have experience or hobbies that demonstrate an interest in hands-on, mechanical things, such as rebuilding an engine.”

Chmura: Hands-on Engineer

UConn alumnus Chmura started working at Whitcraft as a junior at Ellis Tech. Though he intended to pursue his degree in the automotive program, Chmura ended up in the Machine Shop because it offered “cooler tools.”

Karosi says, “When Chad applied to Whitcraft, he arrived for the interview with pages of autoCAD sketches, blueprints of a one-tenth scale remote control monster truck that he designed and built, and other portfolio items that showed his mechanical skills. Chad had an impressive mechanical aptitude; he’s the kind of kid who taught himself CNC (Computer Numerical Control) software.”

Though Chmura was the valedictorian of his high school class, he admits that UConn was not in his sights  post-high school. “I did not envision myself coming to UConn because of the cost. But my high school guidance counselor told me of the Presidential Scholars Program the day before college applications were due, and I scrambled to submit my application in time.”

Chmura was accepted to UConn Engineering and received the scholarship which, combined with an engineering scholarship that covered the cost of his books, made UConn an affordable option. Karosi notes that after Chmura began his coursework, Whitcraft revised his work schedule to accommodate his studies. “We have a policy with our interns: school comes first.”

Throughout his undergraduate years, Chmura worked 15-25 hours/week, racing to Whitcraft after his classes concluded daily. The two experiences, along with his training at Ellis Tech, complemented each other nicely, according to Chmura.

“My pre-UConn education prepared me 180 degrees differently from students who attended traditional high schools. I struggled initially through some of my gen-ed courses, but during my junior and senior years, when my engineering courses ramped up, I was better prepared and less stressed about my classes than many of my peers.”

After his reassignment to the engineering team throughout his years at UConn, Chmura found that once his engineering courses ramped up, he was able to apply his engineering lessons and contribute more actively on large projects at Whitcraft.

One project he recalls with pride involved the design and development of an automated process for bending tubes at different angles. The French customer had been outsourcing the task to an outside vendor. Chmura designed and built a hydraulic machine capable of bending the tubes at two angles with minimal processing, enabling the customer to bring the process in-house and effectively cut production and distribution costs in half.

For their senior design project at UConn, Chmura and his fellow team members, Callan Gruber and Waleed Zawawi (advised by Dr. Jiong Tang), worked on a project involving wheel optimization for sliding glass doors. The team developed a way to test various types of load wheels — the mechanism that supports the sliding motion of the door — for Stanley Access Technologies. The team’s fully-automated test setup was able to accurately measure the rolling resistance of various types of loads while under different conditions (load, temperature, speed, direction, track surface materials) and achieve repeatable results. The project netted the 2012 Mechanical Engineering senior design competition, receiving the top $1000 prize among all ME projects.  

After Chmura earned his B.S. in May 2012, Whitcraft offered him a full-time salaried job. Karosi says, “He’s doing phenomenally. He’s working on a Raytheon missile project for which he serves as lead engineer.”

Since Karosi started keeping rack, the company has hosted seven UConn Engineering interns. Two of the company’s engineers are currently pursuing their master’s degree in mechanical engineering at UConn, with tuition reimbursement help from Whitcraft. 

Chmura is an outspoken advocate for Whitcraft, which he says “makes me feel appreciated.”  Furthermore, he says, Whitcraft provides an outstanding manufacturing environment because it is continually upgrading its equipment to include devices such as direct metal laser sintering and 3D prototyping machines, CAD software, laser cutting devices and other equipment. “I can’t imagine working for a better company,” he concludes.

Mechanical Engineering Demos Shine at the Capitol

Mechanical Engineering Demos Shine at the Capitol

On Thursday, April 11th, a dedicated team of students and faculty demonstrated and discussed innovative “home grown” engineering prototypes at the Connecticut State Capitol during a rally in support of Governor Dannel P. Malloy’s proposed Next Generation Connecticut.

Next Generation Connecticut is aimed at reenergizing and redefining Connecticut’s economy through strategic investments in science, technology, engineering, and math disciplines (STEM) at UConn. The bill, which is making its way through the legislative process, was passed overwhelmingly by the Finance, Revenue and Bonding Committee on April 16th

Among the featured speakers were Gov. Malloy, UConn President Susan Herbst, UConn Provost Mun Y. Choi, elected officials, labor and business council leaders, as well as two outspoken executives from Connecticut businesses: Robert Friedland, co-founder, president, and CEO of Wallingford-based Proton OnSite; and Ed Murphy, Senior Director of Technology Planning and Intellectual Property at JDS Uniphase in Bloomfield.

But for many attendees, the most compelling demonstration of why Connecticut should invest in UConn’s STEM programs was evidenced by the array of extraordinary projects designed and developed by UConn students and faculty members. The selection of UConn Engineering projects displayed included a custom test stand for a common surgical implement, a fuel cell-powered model vehicle, unmanned autonomous aerial and land vehicles, a microbial fuel cell, and 3D manufacturing apparatus. The projects and demonstrators are summarized below.  See photos here.

Surgical Tool Test Device 

For their senior-year design project, Biomedical Engineering students Kathryn Dobler, John Burke and Jordy Schuller designed and built a custom, prototype testing device for a Covidien product, the Premium Surgiclip™, used to clamp off blood vessels during surgery. A hand-held, stapler-like device is used to apply the clip during surgery. The medical equipment giant Covidien tasked the students to develop a fixture capable of performing several different tests to determine the force applied by the clip dispenser and its effect on the clip. The testing unit is integrated within a machine that tests for tensile, compression, fatigue, impact and hardness, with the measures displayed on an attached computer screen. The students explained that the ultimate goal of the project is to establish a clinically acceptable product specification that can be measured and evaluated.

Hydrogen-Powered Fuel Cell Car

Seniors Nicholas Morse and Leia Dwyer, with their advisor, Dr. William Mustain (Chemical & Biomolecular Engineering) demonstrated “The Chegger,” a model car that runs on a hydrogen-powered fuel cell. The car was developed for an American Institute of Chemical Engineers-sponsored competition, ChemECar. Entries must rely on chemical reactions to power the motor and stop the car.  The Chegger employs a light-activated electronic circuit incorporating an iodine chemical reaction to stop the car. For the ChemECar competition, vehicles must travel a fixed distance while carrying a payload, but the distance and weight requirements are not revealed to teams until competition day.  Dr. Mustain and his research team are making advances in the area of electrocatalyst materials for energy conversion and storage, and in enhancing our understanding of the fundamental science behind fuel cell technology, that may contribute to the future of fuel cell applications in energy.

Autonomous Vehicles [View a video here]

Mechanical Engineering students Roseanna Warren, Yuqian Liu, Jiaxing Che and Robert Herman, accompanied by their advisor, Dr. Chengyu Cao, showcased prototype autopilots along with quad-copter and helicopter models – unmanned autonomous vehicles designed and constructed in the Adaptive Systems, Intelligence and Mechatronics (AIM) Lab. Dr. Cao’s lab is developing novel control algorithms to enable the vehicles to adapt to local and environmental uncertainties, such as obstacles and varying terrain. The team is also linking the vehicle control systems into networks that allow for more complex interactions among the vehicles. Other focuses include the auto-pilot technology and circuits that host the control and navigation algorithms. The team’s work will improve the robustness and adaptive capabilities of unmanned vehicle networks.

Benthic Microbial Fuel Cell (BMFCs)               

Graduate students Udayarka Karra (Civil & Environmental Engineering) and Ridvan Umaz (Electrical & Computer Engineering), accompanied by Dr. Baikun Li (Civil & Environmental Engineering), demonstrated two bench-scale microbial fuel cells that generate electricity through the metabolic activity of anaerobic bacteria and the decay of organic matter found in the top layer of sediment in bodies of water.  The research team anticipates these devices may provide a steady power supply for remote oceanographic devices used in sensing and monitoring ocean environments. A focus is on developing a distributed network to address the energy supply problems for underwater sensor network applications. Dr. Li and her team are exploring and testing various facets of the technology, including novel electrode materials, BMFC configurations, power management schemes, and microbial ecology analysis to enhance understanding of the various aspects related to underwater bioenergy conversion.

3D Manufacturing

Sonya Renfro, Program Coordinator for Diversity & Outreach, and junior Monica Smith (Mechanical Engineering and German) demonstrated 3D printing using a desktop device in which a three-dimensional object is built layer-by-layer using a plastic material.  The device is one of two used by UConn’s Engineering Ambassadors in outreach visits to middle and high school students aimed at exciting the students in engineering as a fun and creative career choice.  Often used for rapid-prototyping of highly complex geometries, 3D printing begins with a digital CAD design, which software interprets as a series of thin horizontal slices.  The 3D printer then builds the actual shape in successive layers.   Inexpensive machines are now being used to produce sculptures, machine parts, jewelry, home furnishings, and medical implants. 3D printing is related to the more complex additive manufacturing technologies underway at UConn’s recently announced Pratt & Whitney Additive Manufacturing Innovation Center, which hosts state-of-the-art Arcam electron beam devices that are suitable for manufacturing large, complex metal parts from a range of different materials at high temperature. 

Published: April 24, 2013

Hybrid Bike: Optimizing Pedal Power (VIDEO)

Hybrid Bike: Optimizing Pedal Power (VIDEO)

Junior Robert Herman (Mechanical Engineering) is a serial tinkerer. Between Thanksgiving and Christmas, he converted a bicycle into a hybrid electric/pedal bike to manage the five miles of hilly terrain between his home in Coventry and the UConn campus.
“I was tired of pedaling all the time.  Initially, I thought about a scooter, but parental pressure nixed that idea.  I ultimately decided to retrofit my bike, a Trek 7.2 FX.”

Using a CAD program to design the apparatus, Robert says “Most hybrid bikes use a hub motor. I decided to place mine with the crankset so it could benefit from the bike’s transmission.  I watched some YouTube videos to familiarize myself with different options for converting bikes into hybrids; I learned there are no standard components or methods, so I had to improvise on my own.  Also, in the original design, I was going to build force-feedback pedals, but I scrapped it in lieu of a simple knob to vary speed.”

Like electric cars, the hybrid bike is remarkably quiet and gets great mileage: about 15-25 miles per charge. The assembly includes a lithium iron phosphate (LiFePO4) rechargeable battery, motor with a re-wound armature for enhanced power, motor driver, speed controller, 24 volt charger and battery management system that balances the battery voltage. After assembling and testing the bike, Robert enclosed everything in an aluminum casing that he machined himself, adding weather stripping to prevent moisture from seeping into the pristine assembly.

 

 

Unlike most UConn Engineering students, who arrive on campus with degrees from traditional high schools, Robert is a graduate of Windham Technical High School.  While he trained for the HVAC trade at Windham Tech, Robert taught himself machining technology and developed more advanced skills in the design and construction of complex machines.  Robert thrives on “projects” and always has at least one underway.  He confesses that movies are a source of many ideas, and games flexed his creative aptitude. Most projects are executed in the family basement/design workshop.

This school year, Robert has worked in the Adaptive Systems, Intelligence and Mechatronics Laboratory of Dr. Chengyu Cao.  Robert contributes toward the design and manufacture of a prototype autonomous underwater vehicle (AUV), along with the mechanical and some electrical components – including the AUV’s circuit boards and wire components – on the testing platform.

He also conducts independent research within the AIM lab.  During the fall semester, he learned a programming language and began to develop code intended to direct a Nao humanoid robot to walk.  His current efforts focus on a four-legged spider robot.  For this project, he has developed a stereoscopic camera setup with the aim of converting the camera’s two-dimensional images into three dimensions so the robot can effectively navigate a room.

Robert’s mechanical inclinations and love of hands-on work underscore his career aspirations.  As the engineer that he is training to become, he remarks, “After I graduate, I want to be a tinkerer.”

Smart Robotic Drones Advance Science

 

By Colin Poitras Dr. Chengyu Cao sees a day in the not-so-distant future when intelligent robots will be working alongside humans on a wide range of important tasks from advancing science, to performing deep sea rescues, to monitoring our natural habitats. It’s a bold leap from the pre-programmed factory robots and remote-controlled drones we are most familiar with today. Cao, an assistant professor of mechanical engineering, and his research team are creating a new generation of smart machines – devices that are fully autonomous and capable of navigating their way through our complex world unassisted. These machines will not only be able to travel untethered from one point to another in space and perform tasks; they will be able to “think” on their own using artificial intelligence to adjust to unforeseen obstacles and situations in their environment – a tree, a building, a sudden gust of wind or change in tidal current – without human interface. It is the stuff of which science fiction movies are made. Read the full story, and watch the exciting video, here.

Exploring Solar Energy at UConn

Exploring Solar Energy at UConn

After a nearly 40-year hiatus from the University of Connecticut, solar panels have returned to the School of Engineering with the installation over the summer of two new 3.3 kW panels at the Center for Clean Energy Engineering (C2E2) on UConn’s Depot Campus.

The novel hybrid photovoltaic (PV) power system, designed by Dr. Peng Zhang and his group, serves as a valuable testing apparatus enabling engineering faculty and students to explore a variety of research projects in PV energy production and transmission. Power utilities encounter two main challenges incorporating solar energy into their distributed generation system, due to: the problem of fluctuating power generation arising from the ever-changing sun insolation (a measure of the sun’s radiation that actually reaches the Earth’s surface); and the difficulty in meeting interconnect standards governing distributed PV system connection.  These challenges are at the core of research underway at C2E2 by faculty members associated with the state-funded Eminent Faculty Initiative in Sustainable Energy.

Photovoltaic cells are made of semiconducting materials such as silicon. When light strikes the cell in the form of photons, some portion of the spectrum is absorbed by the semiconductor material, transferring energy to the semiconductor. In the process, electrons are released from their bonds and allowed to flow freely; in this fashion, sunlight is transformed into usable energy.

Drs. Zhang and Sung-Yeul Park, along with their graduate students, are exploring ways to (i) quantify the probability that the PV system will require enhanced maintenance to improve the overall system reliability and (ii) to increase the energy conversion efficiency of the PV system by minimizing losses resulting from the inverter’s conversion of electricity from direct current (DC) to the alternating current (AC) that feeds into the power grid. Recently, Dr. Zhang’s team has developed a systematic, quantitative approach to evaluate the reliability performance of grid-connected PV systems under varying sunlight levels and different component failure rates.  Dr. Zhang is currently investigating the PV microgrid, PV-based electric vehicle charging and smart PV interconnection technologies.

Meanwhile, Dr. Park seeks to develop a hybrid grid interconnection control strategy – comprising a voltage controller in a stand-alone mode, a current controller in grid-connected mode, and a hybrid voltage controller in a transition mode – with the aim of minimizing the grid voltage fluctuation.

A different challenge – how to build a better and more cost-effective solar cell – is the focus of Civil & Environmental Engineering assistant professor Alexander Agrios’ work. Dr. Agrios is using titanium dioxide (TiO2) nanoparticles, which are very small semiconductors that provide a very large surface area upon which photosensitive dye is applied, to manufacture dye-sensitized solar cells. In contrast with conventional designs, which rely on silicon, Dr. Agrios says that dye-sensitized solar cells offer a radically different way to collect solar energy and offer cost savings due to the fact that they are produced using less expensive materials.

He explains that although the TiO2 method is slightly less efficient than conventional silicon – both because the dye molecules absorb a narrower spectrum of light, and there is electrochemical energy loss from the transfer of electrons from the electrolyte solution to the dye – it is more than counterbalanced by reduced manufacturing cost. Dr. Agrios is exploring ways to boost the efficiency of the dye-sensitized solar cells by improving the rate of electron transport kinetics. “There are a lot of good things about TiO2, but it can take milliseconds for an electron to be transported out of the cell, which is a relatively slow rate. We want to enhance the process; the faster we can get the electron out of the cell, the more efficient the process.” He and his team are looking at different materials combinations to enhance the cell efficiency. They are also testing different nanocatalysts, including nano-platinum, to reduce energy loss in the cell.

Solar Roots at UConn

Interest in solar energy has waxed and waned in the U.S. for decades, as the price and availability of oil and gas have similarly see-sawed. During the 1970s, the U.S. experienced serious oil shortages that led to gas rationing, long lines of cars queued at gas stations to refuel, and inflation as the cost of goods rose in sync with the price of oil.  In response to the unstable energy environment of the times, Congress and many states introduced incentives for businesses to develop alternative energy sources – including solar thermal and solar photovoltaic technologies – and rebates for businesses and homeowners who installed them.

According to alumnus Michael T. Boyle (‘76, ‘81, ‘84), now an Associate Professor of Mechanical Engineering at the University of Maine, “During the mid-70s, at the height of the gas wars when fuel was being rationed, most engineers were involved in some kind of alternative energy research…windmills, solar collectors, hydro and the like.”  Dr. Boyle was a graduate student when he was drawn into the solar energy field by UConn professor Wallace Bowley, who directed UConn’s Energy Center.  Dr. Boyle’s thesis advisor, Dr. Lee Langston, also encouraged him to pursue solar energy, which was enjoying enormous momentum at universities across the nation.

A major feature of the Energy Center was a solar collector testing and certification program.

David Jackson (B.S. ‘63, M.S. ‘64), Vice President – Mechanical Engineering at Fuss & O’Neill in Manchester, was a graduate student and lecturer in Mechanical Engineering at UConn during this period. He explains that the incentives exclusively targeted solar thermal collectors used to heat water; the (then) extremely high cost of photovoltaics rendered them largely infeasible for all but defense and aerospace applications. Mr. Jackson notes that energy was becoming a critical issue for the nation, and it was during this time that the U.S. Department of Energy was formed, as a single presidential cabinet-level department, from a merger of various energy-related government programs.

Mr. Jackson recalls, “With the tax incentives, there was an initial flurry of interest. Everybody started making solar collectors. Not everyone knew how to make well-performing collectors. It was recognized that there was a need to be able to characterize the performance of the units. The National Bureau of Standards established testing protocols for heated liquid and heated air style collectors. For solar collector manufacturers to receive the tax incentives, their units had to undergo performance (efficiency) testing and pass certain standards.”

“This led to the establishment of testing facilities that, in turn, needed to be certified,” he says.  The American Refrigeration Institute certified testing facilities, and Jackson notes that UConn was among the first test facilities certified to test both air and liquid heating collectors using natural sunlight. The certification process was developed by the National Bureau of Standards and administered by the Air Conditioning and Refrigeration Institute (ARI).

It was Dr. Bowley, Director of the Energy Center, who championed a testing facility at UConn.  A team of faculty and students built the testing apparatus atop Engineering II.  Mr. Jackson recalls that EII had a second roof back then, consisting of a sort of deck with cedar planking, on which the researchers constructed three test rigs with racks that could be tilted toward the sun as its angle changed across the seasons. The laborious process required the agile researchers to heft panels, wiring, hoses and other weighty equipment up stairwells to the sun-drenched roof. “We also installed an instrumentation building to contain our data collection instruments. These included a microprocessor data collection system designed by a team of electrical engineering students overseen by J. Michael Callahan (B.S. ’82).

Over a six-year period, the lab tested and rated over 75 different collectors submitted by manufacturers.  Besides the on-campus testing and certification center, the Energy Center also performed field tests and inspections throughout the state, particularly during summers.

A 1979 Hampton Gazette news story reported that “…the Center now is running the statewide inspection program for the $400 HUD solar domestic hot water grants; it regularly tests manufacturers’ solar collector designs in accordance with ASHRAE test standards (if the collectors don’t meet the standards, owners using them can’t qualify for the $400 grant).”

The significant rebate made certification a must, and soon, “Word got out, and we quickly received contracts with the Federal Highway Administration, which installed demonstration panels for a domestic hot water heating system in a rest area off I-84; another project involved a passive solar retrofit of a ConnDOT highway maintenance garage in Glastonbury.”

Road to the White House
The team’s reputation led to one particularly interesting episode.  President Carter was dedicated to the idea of reducing not only the nation’s, but also his personal reliance on foreign oil.  So in 1979, as he announced an ambitious energy goal for the U.S. – 20 percent of the nation’s energy use from solar by the year 2000 – President Carter installed four banks of eight panels on the roof of the White House to provide hot water to the Oval Office dining room.  The panel manufacturer was a Connecticut company that knew of UConn’s solar certification program, and soon the General Services Administration awarded the job of testing and balancing to Dave Jackson and Mike Boyle. Dr. Boyle says the testing involved performing various efficiency measurements, including temperature, flow rate and the like. The experience proved interesting to both men, who recall being shadowed by Secret Service men for the duration of their testing and balancing efforts.

Sadly, just as the price of oil dropped precipitously in 1986 due to a large surplus, the White House panels sprung a leak and, rather than repair them, President Ronald Reagan had them dismantled and transported to a new home at Union College in Maine.  A few years later, Dr. Bowley died unexpectedly, and the solar collector test laboratory was removed from the roof of EII to facilitate building additions and renovations.

Mr. Jackson and Dr. Boyle are gratified that today, the work they began decades ago is enjoying renewed interest at UConn.  As the winds of geopolitics and energy supplies blow in unpredictable ways, UConn is helping to develop more sustainable energy technologies and sources that will provide the nation with a greater portfolio for the future.

The Carter White House panels have been blown by the winds of time and political will: today, one panel each resides at Unity College in Maine, the Smithsonian’s National Museum of American History, the Carter Library and the Solar Science and Technology Museum in Dezhou, China.