Month: January 2023

Cloud system large-eddy simulations at NASA GISS

Abstract: The most recent round of climate model physics development at the NASA Goddard Institute for Space Studies (GISS) relied heavily on a library of large-eddy simulation case studies that served as observationally informed benchmarks for the ModelE3 climate model in single-column model mode. Parameter uncertainties were then inputs to an atmosphere-only multi-parameter tuning against satellite data sets, guided by machine learning. Large-eddy simulation case studies are also serving as testbeds for improving understanding of mixed-phase cloud microphysical processes, developing satellite retrieval algorithms, and testing ground- and spaceborne radar and lidar forward simulation software for the GISS climate model. Ongoing work is leading to new and improved case studies for GISS climate model development and other community uses.

Biographical Sketch: Dr. Fridlind’s studies of cloud microphysical properties and processes have concentrated at the intersection of detailed models and rich observational data sets, with an emphasis on aerosol-cloud interactions in ice-containing clouds that are most relevant to climate. Her studies have spanned mixed-phase stratiform clouds from Arctic to Antarctic, tropical to mid-latitude deep convection, mid-latitude continental cumulus and synoptic cirrus, and subtropical stratocumulus. She is a developer of ice microphysics schemes in the DHARMA large-eddy simulation code and, more recently, ice- and mixed-phase microphysics and macrophysics of stratiform clouds in the GISS ModelE3 Earth system model.

Topological metamaterials and the quest for floppy edges that can trap waves

Abstract: Elastic metamaterials are structural materials that owe their unique wave manipulation capabilities to their complex internal architecture. Topological metamaterials are a special subclass of metamaterials whose behavior is directly controlled by the topology of their phonon bands. In this talk, I discuss the mechanics of a class of metamaterials known as topological Maxwell lattices. While these systems have been the object of extensive theoretical investigation, their classical treatment has been limited to ideal configurations and confined to the static limit. I will address the opportunities for design that open up when we account for the effect of structural non-idealities and we shift our focus to the dynamic behavior.

I will first discuss the dynamics of lattices in which the ideal hinges that appear in the theoretical models are replaced by structural ligaments capable of supporting bending deformation – a scenario practically encountered in lattices fabricated using cutting techniques or 3D printing. Aided by laser vibrometry experimental data, I will show how the zero-energy floppy edge modes predicted for ideal configurations morph into finite-frequency wave modes that localize on selected edges, resulting in asymmetric wave transport regimes. I will then address whether the topological attributes of Maxwell lattices, which are native to in-plane mechanics, can be exported to the out-of-plane response. I will show that, through appropriate design principles, it is possible to design bilayer structures in which coupling mechanisms transfer the in-plane topological polarization of the individual layers to the out-of-plane degrees of freedom, leaving a signature of topological polarization in the flexural response.

Biographical Sketch: Stefano Gonella is a Professor in the Department of Civil, Environmental and Geo- Engineering at the University of Minnesota. He received Ph.D. and M.S. in aerospace engineering from Georgia Tech in 2007 and 2005, respectively, following a Laurea, also in aerospace engineering, from the Politecnico di Torino (Italy) in 2003. Before joining the University of Minnesota, he spent 3 years as a post-doctoral associate at Northwestern University. His research interests revolve around the modeling, simulation and experimental characterization of dynamical phenomena in architected materials, phononic crystals, and elastic metamaterials. His latest efforts have been directed towards understanding the role of topological states of matter in the design of mechanical metamaterials. He is also interested in the development of methodologies for structural diagnostics through the mechanistic adaptation of concepts of machine learning and computer vision. He was recipient of the NSF CAREER award in 2015.

Strategies for tackling the computational cost of modeling reacting fluids and related problems

presenter for seminarAbstract: Accurate simulations of combustion and reacting fluid flows require complex, multi-step chemical kinetic models for describing the coupled chemical reactions. These models are often large and mathematically stiff, and contribute to the overall high computational expense of simulating practical phenomena relevant to energy, transportation, and aerospace applications. In this talk, I will introduce these issues, summarize the state-of-the-art in methods used to reduce computational costs, and describe some recent contributions from my group on adaptive preconditioning to accelerate implicit integration of stiff chemical kinetics. I will discuss how these developments, and others, are available in the open-source library Cantera. Finally, I will discuss how my group has extended strategies and methods from combustion modeling to other domains such as modeling of neutron transport and ocean biogeochemistry.

Biographical Sketch: Dr. Kyle Niemeyer is Associate Professor and Welty Faculty Fellow in the School of Mechanical, Industrial, and Manufacturing Engineering at Oregon State University. He received his PhD in Mechanical Engineering from Case Western Reserve University in 2013. Dr. Niemeyer’s research focuses on computational modeling of reacting and non-reacting fluid flows, with a particular interest in numerical methods and high-performance computing. He is also an ardent advocate of open science, and serves as Associate Editor-in-Chief at the Journal of Open Source Software. He is currently working as a AAAS Science and Technology Policy Fellow with the the Industrial Efficiency & Decarbonization Office at the US Department of Energy.

Notes from a dissertation study on using Kansei Engineering methodology in Product Design Process

Abstract: Kansei Engineering (KE) is a method designed by Mitsuo Nagamachi in the 1980s to translate consumers’ feelings and perceptions of a product (Kansei) into design elements. Its applications are used for new product development cases commonly in the automotive, construction machinery, electric home appliances, office machinery, house construction, costume and cosmetic industries (Nagamachi, 2002).  The word Kansei generally refers to sensitivity, sensibility, feeling and emotion.  In product design discipline, understanding user behavior and feelings and applying them to artifacts is crucial. Kansei Engineering providing data about the emotional connections between the design features and user perceptions, clearly defines the problem space by starting with the span the semantic space and span the space of properties steps where the possible/potential design features are selected to be tested (Schütte et al. 2004). It enables modelling the relationship between the design features and the corresponding feelings of the users empirically with quantitative data analysis. This talk will review our research between 2017 and 2022, on application of Kansei Engineering methodology in design process of novice designers (Erol, 2022; Erol & Leblebici Basar, 2020; 2022).

Biographical Sketch: Deniz Leblebici-Basar, Ph.D. is assistant professor at Istanbul Technical University, Istanbul, Turkey. Has received her Doctoral, Master of Science and Bachelor of Science degrees in Industrial Design from Istanbul Technical University. She has been serving as a researcher and faculty at Istanbul Technical University since 2003. She studied design cognition and worked as a research scholar at the Cognition and Language Lab, University at Albany, State University of New York, Albany, U.S.A., in 2009 and 2015. She has been awarded several national and international grants on her academic research areas; cognitive processes of designing activity and cognitive modeling of the design process, user experience design, user experience psychology and university- industry collaborations. Between 2016-2018 she has served as Vice Dean responsible of administrative services at the Faculty of Architecture, ITU. Between 2018-2020 she has served as Visual Communications Director of Istanbul Technical University. She is in the editorial board of AZ ITU Journal of Architecture since 2020.